
LETTERS TO THE EDITOR

Dear CrossTalk Editor,

It is often said today that the difference between software reli-
ability and hardware reliability is that software does not fatigue,
wear out, or burn out.

Thirty years ago, it was common to read of computers that
would become sluggish and ineffective after running for a
while. The simple treatment was to shut down and restart.
Eventually it was realized that the problem was caused by poor
memory management. The invention of garbage disposal, when
used, takes care of it. Unfortunately even nowadays good mem-
ory management is not found as often as it should be, and
Professor Trivedi at Duke University has done a deal of work
trying to educate people in the effects of what he calls aging and
what to do about it.

It could as easily be called wear. Consider the following: we
speak of brakes wearing when they lose material, of structures
wearing by fatigue (change in the crystalline structure), and of
lubricating oil wearing out (chemical change). There is no com-
mon factor except simply reduced usability as a result of use.
And software with badly managed memory suffers reduced
usability as a result of use.

It is not a matter of which heated argument is worthwhile;
however, unless software designers recognize that they must
design to prevent reduced usability as a result of use, there will be
systems that have to be frequently restarted, causing a nuisance.

Roderick Rees
Boeing

Dear CrossTalk Editor,

In her article, “How and Why to Use the Unified Modeling
Language” (June 2005 CrossTalk), Lynn Sanderfer gave a
useful survey of the UML and the benefits it can bring to a

development process. It is also useful to discuss some of the
disadvantages of UML.

The developers must learn from the users enough to make
a domain description that is sufficient to create the application.
UML is not a satisfactory notation for a domain description,
because it is too hard for users to read.

There is no standard for saving and exchanging UML, so
there is a risk to maintainability in being locked in to a propri-
etary tool. XML records the model but not the layout of the
diagram, and the XML standard is a long way short of guaran-
teeing portability. In fact, there is a commercial market in XML
conversion from one proprietary dialect to another.

Most tools can export to the XML MetaData Interchange
(XMI) format. Unfortunately XMI records the model but not
the layout of the diagram, and the XMI standard is a long way
short of guaranteeing portability. Not only are its versions very
different, but proprietary extensions are common, and the
Object Management Group does not provide tests for compli-
ance. (In general, these are the features of UML that cannot be
mapped to the Meta-Object Facility.)

Generating code from UML is not easy. There is no single
tool or interface that has become standard for doing this. UML
is stored in a binary file, so changes to the model by different
developers cannot be merged automatically. The collaboration
of a team of developers, especially a distributed team, depends
on a source code repository and is founded on the diff utility.
The use of UML leads to a directive style and a waterfall
process, which is not suitable for all projects.

UML provides a good way to visualize object-oriented soft-
ware. It is a suitable tool for some tasks. But a process in which a
UML model is the central artifact is unsuitable for many projects.

Chris Morris
Daresbury Lab

Warrington, UK


